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LE’lTER TO THE EDITOR 

Surface structure and anisotropy of Eden clusters 

P Freche?, D Stauffer?$ and H E Stanley$ 
t Institute of Theoretical Physics, Cologne University, 5000 Koln 41, West Germany 
t Center for Polymer Studies, Boston University, Boston, MA 02215, USA 

Received 10 September 1985 

Abstract. The simple Eden model is simulated with clusters which are orders of magnitude 
larger than those of some previous work. The ‘surface’ (perimeter) is slightly anisotropic 
and feels the underlying structure of the square lattice even for 17 million cluster sites. 
The width of the surface layer increases with increasing cluster mass, with an effective 
exponent presumably larger than 1/4 for averages over the whole circumference, and 
perhaps equal to 1/4 for Rat surfaces. Width averages over a small angle are compared 
with the recent prediction of Plischke and Racz. Even 17 million sites are not enough to 
see directly the asymptotic behaviour. 

The growth and forms of clusters [ 1,2], and among them those of Eden clusters [3], 
are of great current interest [4, 51. In the simplest version of the Eden cluster one 
starts from one occupied site as a seed on a lattice, and at every time step occupies 
one randomly selected perimeter site. Perimeters are the empty neighbours of the 
already occupied growth sites and can be called growth sites because of their kinetic 
implications. The growth sites in percolation [6] reduce to these growth sites only in 
the limit p - ,  1. Since there are no such perimeter sites deep in the cluster interior 
[7,8], in the Eden model we do not have to distinguish between perimeter, surface, 
and growth sites, in contrast to more complicated models like crystal growth [9], 
percolation [lo]?, or Ising domain walls [ l l ] .  We do not discuss here the possible 
biological implications and other applications of the Eden growth model but regard 
it as one of the most basic examples of clusters. For the same reason we restrict 
ourselves here to the aforementioned version of this model (model A of [5]) and do 
not consider the more complicated versions B and C of reference [5] even though they 
might be easier to investigate asymptotically. 

Most of our effort was put into Monte Carlo simulations on the square lattice, but 
we will also mention surface studies on a simple cubic lattice. 

The width W of the surface layer is defined through 

W* = (r’)  - ( r ) *  

and is expected to vary asymptotically with some power of the number s of sites in a 
cluster: 

W a s x  (s-,m). 

Here r is the distance of a surface site from the origin (or centre of mass) of the cluster. 
Peters et a1 [7] claimed from simulations of full clusters containing about lo3 sites 

t For growth surfaces see [loa]. 
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that the width is proportional to the cluster radius, i.e. x = l / d  in d dimensions for 
d = 2 and 3. Instead, Plischke and Racz [4] observed in similar simulations an effective 
width exponent x near 0.18 for d = 2 ,  for clusters up to s=4000, but found it to 
decrease with increasing s and suggested an asymptotic logarithmic variation (x  = 0). 
Jullien and Botet [ 5 ] ,  and more recently Plischke and Racz [4], simulated flat surfaces 
in a strip geometry with lengths R up to 768; they found x first to decrease, then to 
increase with increasing R, and concluded x = 1/4 in two dimensions. That latter value 
would correspond to the standard behaviour of ( d  - 1)-dimensional surfaces in d 
dimensions [9-12]t: the surface width increases as the square root of the radius for 
d = 2, logarithmically for d = 3, and remains finite for d above 3. (The Eden clusters 
are fully compact and have a radius R increasing [7,8] as sild; thus the width increases 
as Rxd,  and xd = 2x in two dimensions can be called the fractal width dimension. The 
square-root law thus means 2x = 1/2.) Simulations for much larger systems were asked 
for [4], and are presented here, to clarify these discrepancies between x = 0, x = 1/4, 
and x = 1/2. (If the Eden clusters would behave like self-avoiding walks we would 
have x = 3/4, and x = 1 were they straight lines; x > 1 or x < 0 is impossible.) 

We needed a computer time of about 13 ps on an IBM 3081 (one byte per site) 
and CDC Cyber 176 (one bit per site) to add one site; storing each site in a full word 
reduced this time by a factor 3 on the CDC computer. More than 100 h were spent 
in total. Each site of a large lattice carried one bit of information: ‘Yes’ if it is occupied 
(or a perimeter site), and ‘No’ if it is empty. In addition, the coordinates of all current 
perimeters are stored. Once one of these perimeter sites is selected randomly as 
occupied we check for each of its neighbours if it is an empty site separated from the 
old cluster; if the answer is ‘yes’ we include it in the perimeter list. Typically a thousand 
different clusters were generated and averaged over. To find easily the variation of 
the effective x with cluster size s, our s values were chosen as integer powers of 2; the 
effective exponent was then determined as 

x (  s) = log[ W (  sa-)/ W (  s/a-)]/log 2. 

We also looked at the anisotropies in the direction of the lattice axes and of the lattice 
diagonal, that means we investigated the ratio of the mean square distance (from the 
origin) of perimeters along these directions to the mean square distance of all perimeter 
sites. (The non-monotonic behaviour discussed below for x = x(s) at first suggests a 
computing error. However, we found it in two separate calculations made with different 
algorithms on different computers and programmed with a time interval of one year. 
Moreover this unusual behaviour is consistent with the results published by Jullien 
and Botet [ 5 ]  as well as Plischke and Racz [4].) 

For clusters above s = 222 = 4 million, we simulated only one quadrant of the cluster, 
which allows the study of s = 224 = 17 million with the memory and computer time of 
s = 222. The growth laws near the lattice axes at the border of the quadrant are influenced 
by these boundaries; thus the anisotropies calculated along the lattice axes are unreliable 
and the width averaged over the whole perimeter is slightly diminished in such quadrant 
simulations. However, the anisotropy along the diagonal as well as the effective width 
exponent seem not to be affected by these boundary effects and thus are used in our 
study. For the strip geometry [5] we let the growth process start upward from a line 
of length R until it reaches a height of 6R. These results were extrapolated where 

t For a recent review see also [12a]. 
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necessary (large R )  to infinite heights. Then the exponent x is defined through W E  R2" 
in two dimensions. 

For clusters with a few thousand sites we first checked the assertion x =  l / d  of 
Peters et a1 [7] which was already criticised in reference [4]. Their complicated 
definition of the surface (needed for other clusters [7-111 but not for the fully compact 
Eden clusters) leads to difficulties with the binned density profile near the origin. There 
the density is basically 010; depending on the details of the binning procedure we 
recovered the conflicting results of both references [4] and [5]. Using a better evaluation 
of the surface width [4] or identifying [5] surface with perimeter we recovered the 
results of Plischke and Racz, not those of Peters et al. Thus the surface widths 
determined by Peters et a1 should be discarded, although we did confirm their cluster 
radii and number of perimeter sites. Clearly, the method of Jullien and Botet [5] to 
look at the perimeter sites only is simpler and more reliable for Eden clusters and thus 
is used here. 

Figure 1 gives our main results on the square lattice. For the round clusters (or 
quadrants) the effective width exponent x decreases with s, reaches the previous value 
0.18 in the size range investigated by Plischke and Racz and continues to decrease to 
about 0.16. But for clusters containing millions of sites it increases again with s, 
reaching x = 0.28 f 0.01 between s = 222 and s = 223, and even x = 0.36 f 0.02 between 
8 and 17 million. Clearly large scale computational efforts, as requested in reference 
[4], were needed to show in this way that x does not continue to go to zero as suggested 
before [4] on the basis of much smaller clusters. It seems likely that the asymptotic 
exponent x is larger than 1/4 for finite clusters. For our largest clusters with 23 million 
sites, small sections of the surface look similar to figure 3 ( a )  of reference [5]. 

For the flat surfaces of the strip geometry the same non-monotonic behaviour of 
x ( R )  is seen, as found before [4,5]. However, our simulations show the increase of 

R 

3.6 

1 lo2 loL 1 0 6  
5 

Figure 1. The effective exponent x for surface width [a s- 'X  R2' for two-dimensional 
Eden clusters and strips. The bold full line indicates the suggestion x = 1/4 of Jullien and 
Botet. The light horizontal line gives the size range and effective exponent of Plischke and 
Racz and the full decaying curve their suggested asymptotic law (logarithmic increase). 
The circles show our Monte Carlo results for clusters as function of number s of sites 
(lower scale), triangles our data for strips of linear dimension R (upper scale). The 
statistical error is of the order of the symbol size. The broken curve gives x for the width 
in a small sector near the lattice diagonal. 
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x after the minimum to be less steep than for round clusters. It seems possible that 
the asymptotic exponent is 114 as for usual surface roughening; between R = 512 and 
R = 724 our last exponent is 0.24 with an error of the order of 0.02. (Our height was 
typically 6 R ;  for large R we had to extrapolate to infinite heights.) 

(Even for these flat surfaces the spatial distribution of surface sites is unsymmetric: 
it is possible to find isolated holes rather far behind the growth front but impossible 
to have isolated occupied sites ahead of the surface. This asymmetry, however, seems 
to go to zero for R +CO, as a comparison of density profiles shows. The symmetric 
section seems to follow a Gaussian law, as found in reference [4].) 

How can we explain this highly complex behaviour of the surface width? Figure 
2 indicates qualitatively that Eden clusters are not completely round, the underlying 
lattice structure forces them to deviate from circles towards diamond shape. Figure 3 
shows that even the largest Eden clusters are slighly anisotropic, with the degree of 

Figure 2. The centre of perimeter region, averaged over nine clusters with 4 million sites 
each. To make the very slight anisotropy more visible, most of the inner space is omitted; 
actually the radius is two orders of magnitude larger than the width of the ring. 

+ + + + + + + + + + +  
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Figure 3. Asymmetry of two-dimensional Eden clusters, as measured by the ratio of the 
mean square distance along the lattice axes (+) or lattice diagonal ( x )  to the overall mean 
square distance of surface sites. Note the logarithmic scale for the cluster size s. 
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anisotropy not going to zero for s+m. Clusters seem to grow slightly faster along a 
lattice axis than in the diagonal direction. Such anisotropies were predicted by Dhar 
[ 131 at least for much higher dimensionalities d. The anisotropy we found seems more 
‘serious’ than that found by Family er a1 [ 141 for other cases. They look at each cluster 
separately and determine for each the axes of largest and smallest moment of inertia; 
thus their anisotropy might vanish in the average if the width is determined with respect 
to fixed lattice axes. (We thank F Leyvraz for explaining this point to us.) Our figure 
3, on the other hand, already gives this anisotropy with respect to a fixed coordinate 
system and shows that it does not vanish. 

If, therefore, the perimeter ring surrounding the Eden cluster is not exactly circular, 
this small anisotropy will eventually influence the surface width if it is averaged over 
the whole ring. This total width might approach the cluster radius, multiplied with a 
small constant factor accounting for the anisotropy. Then asymptotically we have 
x = l / d  = 1/2, compatible with our data in figure 1 and in agreement with the incorrectly 
derived claim of Peters et a1 [7]. 

A more ‘intrinsic’ surface-width definition would be to look only at perimeters 
exactly along the lattice diagonal. Then the statistics is very bad, but our data suggest 
this restricted average to give slightly smaller x values for very large clusters than the 
unrestricted average. Thus finally we looked at the somewhat larger number of 
perimeter sites in a narrow sector near the lattice diagonal. The effective exponents, 
with error bars of the order of 0.03, follow the broken line in figure 1 and seem to be 
compatible with x = 1/4 as for the flat surface. The recent theory of Plischke and Racz 
[4] predicts this exponent to be 1/42 = 0.16*0.02, which is in excellent agreement with 
our efectiue exponent up to s = 222 but not with the upward trend for our largest 
clusters. This prediction thus still remains doubtful though not excluded. 

To give some absolute numbers besides exponents: for s = 224 we found from nearly 
20000 clusters (quadrant simulation only) a surface width 12.25k0.02 and an 
anisotropy in the diagonal direction of 0.9838 * 0.0002; the RMS distance from the origin 
for the about 15 600 sites on the perimeter ring was about 1154, the largest distance 
about 1225. 

(On the simple cubic lattice we went up to s = 218 sites and again found results for 
smaller clusters in conflict with those of Peters et al [7] and consistent with those of 
Plischke and Racz [4]. The thickness increases much weaker than the radius, possibly 
logarithmically as figure 4 suggests: x = 0. Of course, we do not know what happens 
for larger clusters not investigated here.) 

Figure 4. Overall surface width as function of cluster size s for simple cubic lattice. The 
data for large s follow a straight line suggesting a logarithmic increase with cluster size. 



L1168 Letter to the Editor 

The simplest interpretation of our results therefore is a surface width increasing, 
as usual in two dimensions, with the square root of the radius, x = 1/2. Then we would 
not be forced to introduce a completely new width exponent for the simple Eden 
clusters. The anisotropy of the clusters makes it meaningless to define the surface 
width by a simple average over the whole circumference of the Eden cluster. In 
summary, with great computational effort a qualitatively clearer picture was found, or 
at least suggested. Nevertheless the approach towards the asymptotic properties of 
the seemingly simple Eden model is quite complex. An application of vector computers 
to this problem is planned [ 151, as well as simulation of Bat surfaces in other than the 
lattice direction [ 161. 

We thank M Plischke, D Dhar, H J Herrmann, F Leyvraz, D Wolf and J G Zabolitzky 
for helpful suggestions and information. The Center for Polymer Studies is supported 
by NSF, ARO, ONR, and work at Cologne University by Sonderforschungsbereich 125. 

Note added in proof: Meanwhile the anisotropy of 3D Eden clusters has been confirmed for clusters up to 
6 million sites by Hirsch. Wolf has shown that for 2D Eden clusters the intrinsic surface width as well as 
the number of growth sites per unit length depend on the global orientation of the surface. 
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